Revisiting the Ramachandran plot from a new angle.
نویسندگان
چکیده
The pioneering work of Ramachandran and colleagues emphasized the dominance of steric constraints in specifying the structure of polypeptides. The ubiquitous Ramachandran plot of backbone dihedral angles (ϕ and ψ) defined the allowed regions of conformational space. These predictions were subsequently confirmed in proteins of known structure. Ramachandran and colleagues also investigated the influence of the backbone angle τ on the distribution of allowed ϕ/ψ combinations. The "bridge region" (ϕ ≤ 0° and -20° ≤ ψ ≤ 40°) was predicted to be particularly sensitive to the value of τ. Here we present an analysis of the distribution of ϕ/ψ angles in 850 non-homologous proteins whose structures are known to a resolution of 1.7 Å or less and sidechain B-factor less than 30 Ų. We show that the distribution of ϕ/ψ angles for all 87,000 residues in these proteins shows the same dependence on τ as predicted by Ramachandran and colleagues. Our results are important because they make clear that steric constraints alone are sufficient to explain the backbone dihedral angle distributions observed in proteins. Contrary to recent suggestions, no additional energetic contributions, such as hydrogen bonding, need be invoked.
منابع مشابه
Comment on "Revisiting the Ramachandran plot from a new angle".
that the ‘‘forbidden [bridge] region is well-populated in folded proteins, which can provide longer-range intramolecular hydrogen-bond partners.’’ However, using only a hard sphere model, Ramachandran and colleagues predicted the f and c combinations as a function of s that are observed in proteins of known structure. In particular, they showed that f and c combinations in the bridge region are...
متن کاملObjectively judging the quality of a protein structure from a Ramachandran plot
MOTIVATION Statistical methods that compare observed and expected distributions of experimental observables provide powerful tools for the quality control of protein structures. The distribution of backbone dihedral angles ('Ramachandran plot') has often been used for such quality control, but without a firm statistical foundation. RESULTS A new and-simple method is presented for judging the ...
متن کاملRevisiting the Ramachandran plot: hard-sphere repulsion, electrostatics, and H-bonding in the alpha-helix.
What determines the shape of the allowed regions in the Ramachandran plot? Although Ramachandran explained these regions in terms of 1-4 hard-sphere repulsions, there are discrepancies with the data where, in particular, the alphaR, alphaL, and beta-strand regions are diagonal. The alphaR-region also varies along the alpha-helix where it is constrained at the center and the amino terminus but d...
متن کاملAn exhaustive survey of regular peptide conformations using a new metric for backbone handedness (h)
The Ramachandran plot is important to structural biology as it describes a peptide backbone in the context of its dominant degrees of freedom-the backbone dihedral angles φ and ψ (Ramachandran, Ramakrishnan & Sasisekharan, 1963). Since its introduction, the Ramachandran plot has been a crucial tool to characterize protein backbone features. However, the conformation or twist of a backbone as a ...
متن کاملConformations of amino acids in proteins.
The main-chain conformations of 237 384 amino acids in 1042 protein subunits from the PDB were analyzed with Ramachandran plots. The populated areas of the empirical Ramachandran plot differed markedly from the classical plot in all regions. All amino acids in alpha-helices are found within a very narrow range of phi, psi angles. As many as 40% of all amino acids are found in this most populate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Protein science : a publication of the Protein Society
دوره 20 7 شماره
صفحات -
تاریخ انتشار 2011